首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8834篇
  免费   773篇
  国内免费   1篇
  2024年   3篇
  2023年   33篇
  2022年   24篇
  2021年   222篇
  2020年   113篇
  2019年   152篇
  2018年   188篇
  2017年   161篇
  2016年   291篇
  2015年   469篇
  2014年   508篇
  2013年   545篇
  2012年   775篇
  2011年   736篇
  2010年   459篇
  2009年   423篇
  2008年   569篇
  2007年   570篇
  2006年   532篇
  2005年   536篇
  2004年   492篇
  2003年   457篇
  2002年   430篇
  2001年   74篇
  2000年   51篇
  1999年   104篇
  1998年   111篇
  1997年   72篇
  1996年   47篇
  1995年   58篇
  1994年   48篇
  1993年   52篇
  1992年   44篇
  1991年   31篇
  1990年   40篇
  1989年   26篇
  1988年   29篇
  1987年   19篇
  1986年   17篇
  1985年   16篇
  1984年   18篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
排序方式: 共有9608条查询结果,搜索用时 231 毫秒
991.
In this study, the collapse temperature was determined using the freeze‐drying microscopy (FDM) method for a variety of cell culture medium‐based solutions (with 0.05–0.8 M trehalose) that are important for long‐term stabilization of living cells in the dry state at ambient temperature (lyopreservation) by freeze‐drying. Being consistent with what has been reported in the literature, the collapse temperature of binary water‐trehalose solutions was found to be similar to the glass transition temperature (Tg ~ ?30°C) of the maximally freeze‐concentrated trehalose solution (~80 wt% trehalose) during the freezing step of freeze‐drying, regardless of the initial concentration of trehalose. However, the effect of the initial trehalose concentration on the collapse temperature of the cell culture medium‐based trehalose solutions was identified to be much more significant, particularly when the trehalose concentration is less than 0.2 M (the collapse temperature can be as low as ?65°C). We also determined that cell density from 1 to 10 million cells/mL and ice seeding at high subzero temperatures (?4 and ?7°C) have negligible impact on the solution collapse temperature. However, ice seeding does significantly affect the ice crystal morphology formed during the freezing step and therefore the drying rate. Finally, bulking agents (mannitol) could significantly affect the collapse temperature only when trehalose concentration is low (<0.2 M). However, improving the collapse temperature by using a high concentration of trehalose might be preferred to the addition of bulking agents in the solutions for freeze‐drying of living cells. We further confirmed the applicability of the collapse temperature measured with small‐scale (2 µL) samples using the FDM system to freeze‐drying of large‐scale (1 mL) samples using scanning electron microscopy (SEM) data. Taken together, the results reported in this study should provide useful guidance to the development of optimal freeze‐drying protocols for lyopreservation of living cells at ambient temperature for easy maintenance and convenient wide distribution to end users, which is important to the eventual success of modern cell‐based medicine. Biotechnol. Bioeng. 2010;106: 247–259. © 2010 Wiley Periodicals, Inc.  相似文献   
992.
The potential of facultative photosynthetic bacteria as producers of photosynthetic pigments, vitamins, coenzymes and other valuable products has been recognized for decades. However, mass cultivation under photosynthetic conditions is generally inefficient due to the inevitable limitation of light supply when cell densities become very high. The previous development of a new cultivation process for maximal expression of photosynthetic genes under semi‐aerobic dark conditions in common bioreactors offers a new perspective for utilizing the facultative photosynthetic bacterium Rhodospirillum rubrum for large‐scale applications. Based on this cultivation system, the present study aimed in determining the maximal achievable cell density of R. rubrum in a bioreactor, thereby providing a major milestone on the way to industrial bioprocesses. As a starting point, we focus on aerobic growth due to higher growth rates and more facile process control under this condition, with the option to extend the process by an anaerobic production phase. Process design and optimization were supported by an unstructured computational process model, based on mixed‐substrate kinetics. Key parameters for growth and process control were determined in shake‐flask experiments or estimated by simulation studies. For fed‐batch cultivation, a computer‐controlled exponential feed algorithm in combination with a pH‐stat element was implemented. As a result, a maximal cell density of 59 g cell dry weight (CDW) L?1 was obtained, representing so far not attainable cell densities for photosynthetic bacteria. The applied exponential fed‐batch methodology therefore enters a range which is commonly employed for industrial applications with microbial cells. The biochemical analysis of high cell density cultures revealed metabolic imbalances, such as the accumulation and excretion of tetrapyrrole intermediates of the bacteriochlorophyll biosynthetic pathway. Biotechnol. Bioeng. 2010. 105: 729–739. © 2009 Wiley Periodicals, Inc.  相似文献   
993.
Cryopreservation currently is the only method for long-term preservation of cellular viability and function for uses in cellular therapies. Characterizing the cryobiological response of a cell type is essential in the approach to designing and optimizing cryopreservation protocols. For cells used in therapies, there is significant interest in designing cryopreservation protocols that do not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant, since this cryoprotectant has been shown to have adverse effects on hematopoietic stem cell (HSC) transplant patients. This study characterized the cryobiological responses of the human erythroleukemic stem cell line TF-1, as a model for HSC. We measured the osmotic parameters of TF-1 cells, including the osmotically-inactive fraction, temperature-dependent membrane hydraulic conductivity and the membrane permeability to 1 M Me2SO. A two-step freezing procedure (interrupted rapid cooling with hold time) and a graded freezing procedure (interrupted slow cooling without hold time) were used to characterize TF-1 cell recovery during various phases of the cooling process. One outcome of these experiments was high recovery of TF-1 cells cryopreserved in the absence of traditional cryoprotectants. The results of this study of the cryobiology of TF-1 cells will be critical for future understanding of the cryobiology of HSC, and to the design of cryopreservation protocols with specific design criteria for applications in cellular therapies.  相似文献   
994.
995.
The nonmuscle myosin II NMY-2 is required for cytokinesis as well as for the establishment of zygote asymmetry during embryogenesis in Caenorhabditis elegans. Here we describe two conditional nmy-2 alleles that rapidly and reversibly inactivate the protein. We show that NMY-2 has late-cell-cycle roles in maintaining embryonic asymmetries and is also required for a surprisingly late step in the maintenance of the cytokinesis furrow. Finally, during a signaling-induced asymmetric cell division, NMY-2 is required for SRC-dependent phosphotyrosine signaling and acts in parallel with WNT-signaling to specify endoderm.  相似文献   
996.
Studies of the genetics of hybrid zones can provide insight into the genomic architecture of species boundaries. By examining patterns of introgression of multiple loci across a hybrid zone, it may be possible to identify regions of the genome that have experienced selection. Here, we present a comparison of introgression in two replicate transects through the house mouse hybrid zone through central Europe, using data from 41 single nucleotide markers. Using both genomic and geographic clines, we found many differences in patterns of introgression between the two transects, as well as some similarities. We found that many loci may have experienced the effects of selection at linked sites, including selection against hybrid genotypes, as well as positive selection in the form of genotypes introgressed into a foreign genetic background. We also found many positive associations of conspecific alleles among unlinked markers, which could be caused by epistatic interactions. Different patterns of introgression in the two transects highlight the challenge of using hybrid zones to identify genes underlying isolation and raise the possibility that the genetic basis of isolation between these species may be dependent on the local population genetic make-up or the local ecological setting.  相似文献   
997.
The selection of a proper AUG start codon requires the base-pairing interactions between the codon on the mRNA and the anticodon of the initiator tRNA. This selection process occurs in a pre-initiation complex that includes multiple translation initiation factors and the small ribosomal subunit. To study how these initiation factors are involved in start codon recognition in multicellular organisms, we isolated mutants that allow the expression of a GFP reporter containing a non-AUG start codon. Here we describe the characterization of mutations in eif-1, which encodes the Caenorhabditis elegans translation initiation factor 1 (eIF1). Two mutations were identified, both of which are substitutions of amino acid residues that are identical in all eukaryotic eIF1 proteins. These residues are located in a structural region where the amino acid residues affected by the Saccharomyces cerevisiae eIF1 mutations are also localized. Both C. elegans mutations are dominant in conferring a non-AUG translation initiation phenotype and lead to growth arrest defects in homozygous animals. By assaying reporter constructs that have base changes at the AUG start codon, these mutants are found to allow expression from most reporters that carry single base changes within the AUG codon. This trend of non-AUG mediated initiation was also observed previously for C. elegans eIF2β mutants, indicating that these two factors play a similar role. These results support that eIF1 functions in ensuring the fidelity of AUG start codon recognition in a multicellular organism.TRANSLATION initiation is thought to be one of the most complex cellular processes in eukaryotes. It involves at least 12 translation initiation factors (eIFs) comprising over 30 polypeptides (Pestova et al. 2007). These factors bring together an initiator methionyl tRNA (Met-tRNAi), the small ribosomal subunit, and a mRNA to form a 48S initiation complex. An important role performed by this complex is to select an AUG codon to initiate translation of the mRNA. Since the first AUG at the 5′ end of most mRNAs is selected as the start site, it is believed that the initiation complex scans for an AUG start codon as it moves from the 5′-capped end of the mRNA toward the 3′ end, as proposed in the ribosomal scanning model (Kozak 1978; Kozak 1989). The recognition of the AUG start codon is mediated by the anticodon of the Met-tRNAi, and the matching base-pairing interactions between the codon of the mRNA and the anticodon determine the site of initiation (Cigan et al. 1988). These base-pairing interactions are essential, but are likely not the only components required for accurately selecting the correct AUG start codon. Numerous initiation factors along with base-pairing interactions have been shown to aid in the AUG recognition process (Pestova et al. 2007).Translation initiation factors involved in start codon selection fidelity were first identified through genetic studies performed in the yeast Saccharomyces cerevisiae. Mutant strains with a modified His4 gene that had an AUU instead of an AUG at the native start site were selected for the ability to survive on media lacking histidine (Donahue et al. 1988; Castilho-Valavicius et al. 1990). These mutants were found to be able to produce the His4 protein by using a downstream inframe UUG codon (the third codon within the His4 coding region) as the translation start site. Further analyses determined that non-AUG initiation occurred mostly from a UUG codon and not significantly from other codons (Huang et al. 1997). These mutants defined five genetic loci and were named sui1-sui5 (suppressor of initiation codon) on the basis of their ability to initiate translation at a non-AUG codon.The sui1 suppressors were found to have missense mutations in eIF1. These missense mutations showed semidominant or codominant properties in non-AUG translation initiation while deletion of the eIF1 gene led to lethality in yeast (Yoon and Donahue 1992). eIF1 is a highly conserved protein with a size of approximately 12 kDa that plays a vital role in multiple translation initiation steps. eIF1 is incorporated into a multifactor complex that includes eIF1A, eIF3, and eIF5 and stimulates the recruiting of the ternary complex (consisting of eIF2 · GTP and the charged Met-tRNAi) to the small ribosomal subunit to form the 43S pre-initiation complex (Singh et al. 2004). eIF1 acts synergistically with eIF1A to promote continuous ribosomal scanning for AUG codons by stabilizing an open conformation that allows mRNA to pass through the complex (Maag et al. 2005; Cheung et al. 2007; Passmore et al. 2007). It also mediates the assembly of the ribosomal initiation complex at the AUG start codon (Pestova et al. 1998). eIF1 dissociates from the complex upon recognition of the AUG codon and this dissociation is necessary to trigger a series of conformational changes leading to the translation elongation phase (Algire et al. 2005). Consistent with these roles, sui1 mutations reduce the affinity of eIF1 for the ribosome and cause premature release of eIF1 at non-AUG codons (Cheung et al. 2007). Other sui mutations support the involvement of four additional genes in translation initiation fidelity in yeast. Mutations have been isolated in the heterotrimeric eIF2 as SUI2 (α-subunit) (Cigan et al. 1989), SUI3 (β-subunit) (Donahue et al. 1988), and SUI4 (γ-subunit) (Huang et al. 1997), and a mutation in eIF5 corresponds to the SUI5 mutant (Huang et al. 1997).However, the genetic studies that identified these translation fidelity mutants were conducted only in yeast. It is not known if there are similar mechanisms regulating translation initiation fidelity in multicellular organisms. To address this question, we designed a genetic system to isolate C. elegans mutants that have reduced fidelity in AUG start codon selection (Zhang and Maduzia 2010). Mutants were selected on the basis of their ability to express a GFP reporter that contains a GUG codon in place of its native translation start site. Here we report the characterization of two mutants that have mutations in eIF1. Unlike yeast sui1 mutants, which preferred the UUG codon, these mutants are capable of using a subset of non-AUG codons for translation initiation. Our results are consistent with eIF1 playing a role in the fidelity of AUG codon selection, perhaps by discriminating base-pairing interactions between the codon and anticodon during start-site selection.  相似文献   
998.
Human airway cilia contain soluble adenylyl cyclase (sAC) that produces cAMP upon HCO3/CO2 stimulation to increase ciliary beat frequency (CBF). Because apical HCO3 exchange depends on cystic fibrosis transmembrane conductance regulator (CFTR), malfunctioning CFTR might impair sAC-mediated CBF regulation in cells from patients with cystic fibrosis (CF). By Western blot, sAC isoforms are equally expressed in normal and CF airway epithelial cells, but CBF decreased more in CF than normal cells upon increased apical HCO3/CO2 exposure in part because of greater intracellular acidification from unbalanced CO2 influx (estimated by 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence). Importantly, ciliated cell-specific cAMP production (estimated by FRET fluorescence ratio changes of tagged cAMP-dependent protein kinase (PKA) subunits expressed under a ciliated cell-specific promoter) in response to increased apical HCO3/CO2 perfusion was higher in normal compared with CF cells. Inhibition of bicarbonate influx via CFTR (CFTRinh172) and inhibition of sAC (KH7) and PKA activation (H89) led to larger CBF declines in normal cells, now comparable with changes seen in CF cells. These inhibitors also reduced FRET changes in normal cells to the level of CF cells with the expected exception of H89, which does not prevent dissociation of the fluorescently tagged PKA subunits. Basolateral permeabilization and subsequent perfusion with HCO3/CO2 rescued CBF and FRET changes in CF cells to the level of normal cells. These results suggest that CBF regulation by sAC-produced cAMP could be impaired in CF, thereby possibly contributing to mucociliary dysfunction in this disease, at least during disease exacerbations when airway acidification is common.  相似文献   
999.
The microtubule-associated protein Tau plays a crucial role in regulating the dynamic stability of microtubules during neuronal development and synaptic transmission. In a group of neurodegenerative diseases, such as Alzheimer disease and other tauopathies, conformational changes in Tau are associated with the initial stages of disease pathology. Folding of Tau into the MC1 conformation, where the amino acids at residues 7–9 interact with residues 312–342, is one of the earliest pathological alterations of Tau in Alzheimer disease. The mechanism of this conformational change in Tau and the subsequent effect on function and association to microtubules is largely unknown. Recent work by our group and others suggests that members of the Hsp70 family play a significant role in Tau regulation. Our new findings suggest that heat shock cognate (Hsc) 70 facilitates Tau-mediated microtubule polymerization. The association of Hsc70 with Tau was rapidly enhanced following treatment with microtubule-destabilizing agents. The fate of Tau released from the microtubule was found to be dependent on ATPase activity of Hsc70. Microtubule destabilization also rapidly increased the MC1 folded conformation of Tau. An in vitro assay suggests that Hsc70 facilitates formation of MC1 Tau. However, in a hyperphosphorylating environment, the formation of MC1 was abrogated, but Hsc70 binding to Tau was enhanced. Thus, under normal circumstances, MC1 formation may be a protective conformation facilitated by Hsc70. However, in a diseased environment, Hsc70 may preserve Tau in a more unstructured state, perhaps facilitating its pathogenicity.  相似文献   
1000.
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of food and water-borne E. coli-mediated human diarrhoea worldwide. The incidence in developing countries is estimated at 650 million cases per year, resulting in 800 000 deaths, primarily in children under the age of five. ETEC is also the most common cause of diarrhoea among travellers, including the military, from industrialized nations to less developed countries. In addition, ETEC is a major pathogen of animals, being responsible for scours in cattle and neonatal and postweaning diarrhoea in pigs and resulting in significant financial losses. Studies on the pathogenesis of ETEC infections have concentrated on the plasmid-encoded heat-stable and heat-labile enterotoxins and on the plasmid-encoded antigenically variable colonization factors. Relatively little work has been carried out on chromosomally encoded virulence factors. Here, we review the known virulence factors of ETEC and highlight the future for combating this major disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号